Главная
Регистрация
Вход
Понедельник
21.05.2018
15:54
Приветствую Вас Гость | RSS
Эфирные технологии

Меню сайта

Категории раздела
Мои статьи [35]
Мои мысли [0]

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

 Каталог статей 
Главная » Статьи » Мои статьи

Нулевая точка ускорения-торможения при нелинейном вращении




Рассмотрим более детально процесс самодвижения аппаратов, которые не отталкиваются от опоры и не отбрасывают от себя часть своей массы. Толчин этот процесс связывал с периодическим появлением динамической опорной точки внутри механизма инерцоида.

Изучим файл «Инерцоид Толчина», гл.1, предложение 4 – «Динамическая точка опоры создается периодически внутри его системы.».

Далее между рис.10 и 11 он утверждает, что – «ПРЕВОСХОДЯЩЕЕ количество инертности одной половины системы масс инерцоида – то грузов, то корпуса – вполне надежная динамическая точка опоры для другой половины системы масс.».

Это выражение Толчина необходимо откорректировать, так как он предполагает, что эта динамическая опора еще и подвижна внутри аппарата и переходит от грузов к корпусу и назад - от корпуса к грузам, создавая временную опору для противоположной массы.

На самом деле это МЕСТО мгновенно и точно связано только с одной точкой или системой точек симметричных и неуравновешенных масс (дебалансов, «грузов»), синхронно и нелинейно движущихся по окружности ПОПЕРЕК заданного прямолинейного перемещения аппарата («корпуса»), которое (место) не изменяет своего положения относительно корпуса аппарата.

Поэтому превосходящее количество инертности (или мгновенное «налипание» ближайшей массы эфиров) можно относить только к вращающимся «грузам» (соответствующих масс твердых тел, жидкости, газа и даже электронов), на мгновение пересекающим эти особые «нулевые» точки.

Очень трудно допустить неподготовленному сознанию, что масса грузов в этих условиях на один миг становится НАМНОГО больше. Толчин отмечал разницу в движении при отключении узла резкого изменения ускорения-торможения грузов, когда пружина не прижимает тормозную планку к кулачку в механизме инерцоида. Тогда устройство совершало колебательные движения около неподвижного центра масс по принципу вибратора, никуда не сдвигаясь. При равномерном вращении грузов на незакрепленном корпусе можно видеть, что центр масс относительно корпуса движется в этом случае по одной прямой и НЕ выходит за пределы своих крайних положений относительно корпуса. В режиме инерцоидного (управления инерцией) движения, известного из ОПЫТА, корпус движется ЗА предел одного крайнего положения, образованного при движении по принципу вибратора.

Существует только ОДНО логическое объяснение – в этих точках масса вращающихся грузов в инерцоидах на миг становится БОЛЬШЕ!

Это и выводит центр масс корпуса и грузов из режима колебаний на миг к прямолинейному движению в одном направлении.

Возникает практический вопрос – нет ли идеальной технической возможности устремить на мгновение величину вращающейся массы в этих точках к бесконечности? Для этого воспользуемся исследованием Шипова, см. файл «Летающая тарелка земного происхождения», рис.51 с графиками перемещения, линейной скорости корпуса инерциоида и нелинейной угловой скорости вращения малых грузов.

(Требуется пояснить, что выражение «инерцоид» - это дань уважения к авторству Толчина, а «инерциоид» - Шипова.)

Ниже Шипов опять фиксирует результат эксперимента предложением – «Из этих графиков отчетливо видно, что ПРИЧИНОЙ движения центра масс инерциоида является ИЗМЕНЕНИЕ угловой частоты вращения малых грузов», где выделения заглавными буквами сделано автором этих записей. Однако этот факт первым заметил Толчин еще в 1936 году! Очень жаль, что никому не пришло в голову открыто поделиться своими достижениями за прошедшие 75 лет…

Мгновенный центр масс инерцоида всегда стремится занять положение более близкое к НАИБОЛЬШЕЙ массе из этих взаимодействующих масс вращающихся грузов и подвижного корпуса для равновесия! Так как вращение грузов в этой точке не прекращалось, то существует такой короткий миг времени, когда изменение угловой скорости вращения грузов будет равно НУЛЮ!

Наше сознание должно наконец-то признать научный факт многих ОПЫТОВ что, в миг времени, когда массы грузов проходят эту точку резкого изменения угловой скорости на вершине «шипа», они на мгновение становятся очень тяжелыми. В этой точке отмечается явный скачок от максимального ускорения одного направления до максимального ускорения другого направления.

Изменение углового вращения можно называть и угловым ускорением-торможением грузов, которое является причиной, а движение инерциоида по прямой является следствием этой причины. Как похоже на причинную механику Козырева… Мгновенное значение изменения угловой скорости в заданной точке ее графика принято определять тангенсом угла, образованного между касательной линией к этой точке и осью времени.

Далее удобнее рассмотреть Схему1. Мысленно посередине каждой впадины идеального графика нелинейной угловой скорости проведем перпендикуляры к оси времени и рассмотрим только ОДИН период из всех циклов. Для упрощения построений заменим экспериментальный график близким по форме, но идеальным - в форме «шипа», составленным из двух симметричных четвертинок окружности одного радиуса. После перевода в более удобные для представления размерности из рад/сек в об/сек и округления получим начальное значение угловой скорости - 0,5 оборота в секунду и максимальное – 2 об/сек для модели Шипова.

Более круто вверх-вниз будет изменяться график ускорений-торможений, если в основе нелинейного графика угловой скорости мы используем симметричные четвертинки эллипсов. Окрестность близкую к точке 2 (слева) графика нелинейной угловой скорости «привяжем» к моменту (мигу) времени t1, саму точку 2 (точно по центру) – к t2, а окрестность близкую к точке 2 (справа) – к t3. Эти миги времени настолько малы, что кажущееся движение становится серией неподвижных 3D кадров, на которых грузы неподвижны, а их взаимодействие между собой и корпусом заменено действием соответствующих пассивных (следствий) сил предыдущих состояний и активных (причин) ускорений-торможений настоящего момента (мига).

Можно понять суть процесса, если заменить его последовательностью неподвижных состояний ОДНОГО груза в моменты t1, 2 и 3; так как состояние другого груза будет симметричным. При этом используем формулу второго закона Ньютона в виде отношения пассивной (следствие) силы и активного (причина) ускорения-торможения, выражающего величину МАССЫ груза. Тогда объединенная теория Бартини-Козырева в этом случае предполагает, что во все предшествующие t1 мгновения времени (внутри периода Т) и в момент t1 масса груза условно ПОСТОЯННА. Однако в миг t2 из мига t1 как следствие перейдет величина силы с модулем равным плюс бесконечности. При этом активное (причина) ускорение-торможение будет равно НУЛЮ, что качественно должно дать значение бесконечно большой массы груза (как их отношение).

Эти предположения соответствуют вышеуказанным опытным и экспериментальным данным, ФАКТУ мгновенного «прихватывания» массы эфира в НУЛЕВОЙ точке нелинейно вращающихся грузов в устройствах типа инерцоида Толчина.

Это НЕ означает, что масса вращающихся ГРУЗОВ стала так велика, это миг мгновенного объединения в ЕДИНЫЙ монолит физической массы грузов с массой ближайшей сверхплотной эфирной материи. Таким образом, все ближайшие сферы твердых эфиров физического вещества и окружающего пространства как бы мгновенно «схватываются» в жидком эфире, превращая жидкий эфир с вращающимися грузами на миг в единый монолитный кусок пространства огромной массы.
Переход ускорения-торможения при ВРАЩЕНИИ масс через «0» в инерцоидных устройствах раскрывает смысл технологии НУЛЕВОЙ точки для свободного движения в пространстве.


В неподвижное состояние момента t3 из состояния t2 переходит нулевое значение пассивной (следствие) силы при этом активное (причина) значение ускорения-торможения равно минус бесконечности. В миг t3 масса как их отношение будет равна нулю. В последующие миги времени после t3, но в пределах периода Т масса вращающихся грузов будет условно ПОСТОЯННОЙ и равной массе в начале цикла.

В циклах следующих периодов взаимодействие физического вещества грузов с материей эфира аналогично повторяется, вызывая цикличное стремление центра масс инерцоида занять новое «убегающее» положение равновесия. Импульс количества движения получает та часть массы инерцоида, которая связана только с корпусом (исключая массу грузов). Тогда пассивная сила тяги усовершенствованного инерцоида будет направлена против сил «гравитации», что можно интерпретировать как мгновенное проявление «отрицательной» массы подвижной среды.

Благодаря ОБРАТНОМУ гироскопическому эффекту активная сила торможения-ускорения (причина) всегда перпендикулярна силе тяги и для двух симметрично вращающихся масс может быть замкнута на корпус инерцоида. При этом пассивная сила тяги всегда действует по ходу заданного движения и имеет смысл реакции (следствия или пассивности) на воздействие от торможения-ускорения. Поэтому пассивность силы тяги (как реакции) не может породить силу противодействия на себя саму, так как она уже является РЕАКЦИЕЙ на перпендикулярную ей первичную активную силу торможения-ускорения. Таким образом, эта ситуация в механике не имеет отношения к третьему закону Ньютона школьного курса физики, из которого исключено взаимодействие вращающихся тел.

Чтобы с момента обучения прекратить демагогические искажения истины, открыто и надолго зомбирующие детские сознания уже в ШКОЛЕ (!) достаточно ввести одно уточнение в третий закон Ньютона – «Силы, с которыми взаимодействующие БЕЗ ВРАЩЕНИЙ тела действуют друг на друга, равны по модулю и направлены по одной прямой в противоположные стороны.».

Для демонстрации взаимодействия тел, где хотя бы одно тело вращается, можно предложить простой опыт с массивным волчком. На верхнюю часть оси надо надеть подшипник скольжения, который сбоку можно удерживать через ось и телескопическую втулку. После раскрутки волчка необходимо резко ударить по подшипнику перпендикулярно оси, что выдернет ось из телескопической втулки и столкнет небольшой предмет в направлении перпендикулярном удару. Конечно, опыт проводят после обеспечения всех мер безопасности.

Многим на практике приходилось внимательно рассматривать внешний вид обычных пружин сжатия в виде цилиндрической спирали равного шага любого направления навивки. Расположим одну горизонтально перед глазами. При небольших угловых разворотах вокруг вертикальной оси в разные стороны можно найти такие углы, при которых первоначальный вид точной синусоиды изменяется на точные «шипы» из полуэллипсов, острия которых обращены либо вверх, либо вниз. Для наглядности эти виды представлены на серии из 6 фотоснимков пружины. Если пружину растянуть еще больше, то потребуется ее дополнительно развернуть до получения точной формы проекции «шипа» при этом полуэллипсы в предельном положении преобразуются в полуокружности.

Таким образом, уже легче понять, что все полуэллипсы и полуокружности, образующие плоские проекции точных «шипов» в пространстве (3D) представляют собой спиральные объемные траектории трубопроводов, проводов, по которым течет жидкость, движется газ или протекает электрический ток. Даже движение свободных электронов в пространстве подчиняется этому же закону.

Технические возможности получения точной формы «шипов» очень разнообразны и технологически просто выполнимы, что будет представлено ниже в следующей части при описании 4-х вариантов исполнения усовершенствованной идеи инерцоида.

Поскольку сила тяги по заданному направлению является следствием возбуждения инерционных процессов перпендикулярных ей в виде симметричных сил ускорения-торможения нелинейно вращающихся масс, то в дальнейшем устройства на их основе в этих записях будут для СОКРАЩЕНИЯ называться ЭФирно-ИНерционными (эфинными) двигателями различных модификаций.

Мгновенное «ПРИСОЕДИНЕНИЕ» массы эфирной материи к ВРАЩАЮЩИМСЯ физическим массам в точке «НУЛЕВОГО» значения нелинейного углового ускорения-торможения СМЕЩАЕТ мгновенное положение центра масс системы в сторону вращающихся масс по ходу движения, что отражает суть свободного движения аппаратов в открытых пространствах с эфинными двигателями.

Категория: Мои статьи | Добавил: Strannik (14.02.2011)
Просмотров: 3280 | Комментарии: 1
Всего комментариев: 1
1  
A perfect reply! Thanks for taking the trobule.

Имя *:
Email *:
Код *:

Поиск

Друзья сайта
  • Официальный блог
  • Инструкции для uCoz

  • Copyright Эфирные технологии © 2018